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A Mixture of Viscous Elastic Materials

with Different Constituent Tempneratures

. ¥ + L+
R. E. Craine, A. E. Green and P. M. Naghdi

Atstract. Constitutive equations are discussed for a mixture of any

number of materials with elastic and viscous properties in which the
constituents may have different temperatures.

1. Introduction

The recent literature on the continuum theory of mixtures contains
rather diverse points of view in the primitive concepts and the forms
of the basic field equations. The basic equations representing balances
of masses, linear momenta, moments of momenta, and energy for each con-
stituent together with equations for the mixture as a whole obtained by
summation, as developed by Truesdell [1,2], Truesdell and Toupin (3] and
a number of other writers are closely related and are based on similar
points of view. O the other hand, the development of the theory by
sreen and Naghdi {4] and Mills (51 is based on different primitive con-
2epts and consequently some of their resulting equations have different
forms from those in {1,3]. However, in a recent paper confined to mix-
tures with a single temperature, the differences and the relationship

t.etween the two approuches have been clarified by Green and Naghdi fel:

*
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The basic equations in the twc developments are equivalent, although
this is not apparent at first sight in the case of some of the equa-
tions* -- the differences lie chiefly in the primitive concepts, the
premise under which the twc forms of the theory are developed, in
addition to the interpretationc associated with some of the quantities
which occur in the equations. For further detail regarding the relation-
ship between the two forms of the theory, as well as additional references
on the subject, we refer the reader to [6].

In the present paper, we are concerned with a mixture of any number
of constituents each of which is at a different temperature. Since we
now regard the previous paper of Green and Naghdi [7] involving many
temperatures as too restrictive, we first reconsider here the forms of
the basic equations, as well as the entropy inequality for the uixture
as a whole. Although the discussion of the basic equations in sections
3-5 involves some repetition of known results, it is included here in
order to have the basic equations in line with our point of view [6]
and in terms of variables which we believe provide simple interpretations
when discussing constitutive equations.

In section 6, we first briefly outline two procedures for the dis-
cussion of constitutive equations and adopt the simpler of the two which
is slightly more restrictive than the other. We then consider a mixture
of v constituents (with different temperatures) which are not necessarily

gases and which have viscous and elastic properties. In particular, we

*
In [6], Green and Naghdi have given a different interpretation to the
internal energy in the energy equation used by them in {4]) and have
recast this equation in a slightly different form.
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obtain explicit results for the "equilibrium" values of various quantities

and also include a discussion of the results when all constituents have

the same temperature.
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2. Notation

We summarize reclevant notation for kinematic quantities and density.
We consider a mixture of v interacting constituents, each of which is
regarded as a continuum; we refer to the ath constituent as the continuum
S (¢=1,2,..,v) . We assume that each point within the mixture is
occupied simultaneously by all v constitucnts, whizh are in motion
relative to a fixei system of rectangular Cartesian axes. The position
of a typical particle of Sy at time =~ 1is denoted by xg(w) . where

. x‘;, 1) (-w<t1St) (2.1)

(1) = (xS, X
and X, 1isc a reference position of the particles of Sa . All Latin
indices are tensor indices and take the values 1,2,3, and the usual
summation convention is employed. The Greek letter « , as in (2.1), is
reserved for reference to the ath constituent of the mixture only. Unless
indicated otherwise the summation convention does not apply to Greek
indices. We use the notation

o
X

RO (2.2)

assume that the particles of Sy {(¢=1,2,..,v) all occupy the same

position at time t so that
x% = x = =X, = X, , (2.3)

and we refer to this position at time t as x, .

L,




The velocity vectors at the point X, in sa at time t are given

by

(=1,2,..,v) (2.4)

x o
where D/Dt denotes differentiation with respect to t holding X,

fixed in continuum Sa . This operator may be written in the form
o
D _ 3 @ 3
7 - 3t Yk _Bxk . (2.5)

Acceleration vectors at time t are

[+ 4
o o o
v . .
& Dvy 3v; o3y

T T (@=22,009) (2-6)

the densities of Sy at time t are Py and the rates of deformation

and vorticity tensors for sa at time t are given by

I o o -4
24, = Vv, VL, 2wik Vi,k Vk,i ’ (2.7)

where a comma stands for partial differentiation with respect to x,

We define total density p and mean velocity A by the expressions

Y
p =3 Da ’ (2 .8)
a=1 .
v
o
pvi =a§=:l ‘;)d Vi N (2-9)
5.
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and put

o
u, =V, - v ,
i i i
so that
v a
T p u =0 .
a=1 & 1

We also define the operator

(.)=2L).=§L).+v M

Dt at k axk ’

ani observe that

g|oR
n

qlo
+

M e

(2.10)

(2.11)

(2.12)

(2.13)
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3. Mass and momentum

Using a fixed surface A enclosing an arbitrary volume V the

2quation of mass balance for Sa ist
] [ogvimeaa=]
STd P V) ey v da= | moav (3.1)
Y A v

where ma is density of mass production arising from all the other

constituents and n is the unit outward normal to A ., Hence

kK
o
dp Do
- 0, 2 ol «
my T 5 5 (P ) T T % Y (3.2)
and w- add the condition

v
T m =0 . (3-3)

o=1 ¢

Next we consider the equation of linear momentum for Sa in the

form

‘Alternatively we could use material volume elements of each constituent
whizh coincide at time t

A A AP W har e m e

o e s e




\Y A \'%
o o, . o
= I (pOr Fi + pi)av + J N Oy dA R (3.4)
v A
o N : @ :
where Fi is external body force applied to sa and O i is the stress

4+ . C e . i
tensor associated with the ingredient sa so that the total force

The term involving

. o
acting on Sa across A per unit area is Ny Oy

Cg is similar to that used by Ingram and Eringen (8] and allows for the
fact that momentum is supplied to sd not from rest but from all the
other constituents of the mixture with some mean velocity O? which
will depend on all the velozities of the remaining constituents, but it
is not necessary to make any special assumption about this. The vector

o .
p, may now be called a aiffusive force acting on sa . In addition to

(3.4) we impose the condition

Voo Ao .
azl(pi +m Vi) =0 . (3.5)

In point form equation (3.4) becomes

o o 2 1 Aoy N
+ pa(Fi- fi)— m,ViTPytm Vi o (3.0)

o

O%i .k

o
and we assume that 12 is a vector unaltered by superposed rigid body
motions of the whole mixture, apart from orientation. For convenience

o
we say that 1N is objective but other writers give this word a slightly

**Truesdell and Toupin [3] use a different order for the indices on the
stress tensor which, in general, is not symmetric.




iifterent meaning. Professor Chadwick has suggested that (3.6) be put

n 7 omore zonvenient form

. Q
T - = + M u .
ck¢,K ’ oa(rl f1) By o i ’ (3.7)
. o .
wNOrE u is obgective ani
o o Ay o 4 ; @ _ (3.8)
La v, FiT Ty Vi St ma I o5 Wy = . .

ror (3.7) ani (3.8) we recover the equations of motion for the mixture

2. a whole., Thus

v v
o o o
PR NS N LI (3:9)
o=l a=1
v
(-4
o, =T Oy (3.10)
a=1
Corresponding to (3.4) we postulate a moment of momentum equation

(3.11)

were eiJ‘ is the alternating tensor and

pre)
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_ 3 I o I o o I Aa
Lij =3t v oV xj av + A pa Ve Vg xj n, dA m, Vs Xj av

(o4 [+ 4 o o
- Iv(pa Fi+-pi)xj av - IA My Oy; Xy dA - jv xji av . (3.12)

In (3.12) xgi is a skew symmetric tensor which may be called the dif-

fusive couple acting on Sy With the help of (3.6), equation (3.11)

yields

o o
kil = " Mg 2 (3.13)

o
where O kil is the skew symmetric part of c:i . We add the condition

v
o
z )\ki = 0 R (3.1)4)
a=1
so that
c[ki] =0 . (3-15)

10.




Inergy balance and entropy production for mixture

Before discucsing cnergy balance equations for each constituent

(4]

We obtain the energy equation for the mixture. We assume that

a]‘ v 1 o o
- U = v, v, )dvVv
at Jy, aEl(pa o2 P V1 vl)

v
1 o0 o o
+ IA qu(Da vk Uy * 5 Py Yk Vi vi)nk dA

v v
=l (or+s p Fv¥avs| (£ ¥ v¥-n)aa , 4.1)
a 171 i i
' a=1 A a=1
where we taxe
t¥ = n & h=n_ gq q, = ; qa Z p. T (4.2)
i k “ki °? k *k ? Kk a=1 k -1 o o

qz being the heat flux vector for sd and 9 the heat flux vector

for the mixture, ra is heat supply per unit mass of sa s per unit

time, including the heat supply arising irom all other constituents, with r
the total heat supply per unit mass of the mixture; the internal heat supplies
will be specified by constitutive equations but do not affect the value of

r in (h.2)u. Also Ua is internal ernergy of s, per unit mass, allowing for

interaction between 5, 2nd the other constituents. With the help of (3.7)

the point form of (4.1) becomes

o
v D U
or = Ay x Z (°a SE * My Uy)

v
[~ 24 o
+'£(u,V+o.Va +l

1 Vit %1 Vix Ema,u “)’O : (4.3)

1l.
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Cince
a
v D Ua .

afl(pa -BE— + ma Ud) = pU + & ) (,4-.)-4-)

where
: P2 b.5)

U= ) 3 = - U .
P aEl pa a ’ a}=:l axk pauk or) ’ (-2
equation (4.3) has the alternative form

r - -L'T-§+;(ava+ca W oiinm u¥ u?) (4.6)
Pr=Q - P wor P 1% Tk T2 et Y g ©

We adopt an entropy inequality for the mixture which is equivalent

to one used by Truesdell (2], namely

aI v v
vy Z SdV+I T p_ Vv, S dA
Oty @ aocy fo K ek
v prT th
v
s 2o K wzo (4.7)
Va=1l o Aa=]l o

where Ta (> 0) is the temperature of the constituent s, and Sa is

its entropy per unit mass. In point form (4.7) becomes

o
v DS v pr v Q.
k
T(p =%+m s)-g 22,y (=), 20 . (4.8)
a=1 @ Dt o o Td a=1 TQ' ,k
12.




Except when all the temperaturesare equal we cannot develop the
consequence of the inequality (4.8) with the help only of (4.3). We
need energy equations for each constituent so as to be able to eliminate
r, from (4.8) and also to provide sufficient equations for the tempera=-

tures Tor (¢=1,..,v) . We consider this in the next section.

13.
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5. Energy balance for each constituent

Recalling quantities defined in previous sections we postulate an
energy balance for sa in the form

) I 1 o «o I l o o o . I 1 Aa Ao
s, pa(Uu+ 5 vy vi)dV + . pa(Ud+2 vy vi)vk n, dA .2 m, Vi Vi dv

o « o @ a «
= JV {pa(rd+-Fi Vi) + Py vy o+ Ay e} av

+ IA(tZ v';'-nk q:)dA + IV by 4V - IA n E: aA . (5.1)

The scalar wa represents a volume contribution to the energy equation
arising from interaction, in addition to interactions already considered,
and n E: represents an interaction surface flow of energy with Eg

an interaction flux vector. However, in point form this vector contributes
a:,k which can be absorbed into wa , SO without loss of generality we

set a: = 0 . The constituent sa has a mass increase acquired from the
other constituents and the rate of change of its kinetic energy just
before becoming a part of sa is represented by the third group of

terms in (5.1). All other quantities in (5.1) have been defined pre-
viously and follow naturally from the discussion of sections 3,4.

Equation (5.1) can be reduced to

1k,




o
DU
f o o oo 1 ¢ o 1 Ay Aa
JV{pa 5Tt T, UQ + pa(fi- Fi)vi+ Sm Vi VitE A ViV, } av
_ T ¢ o o o , I o o o
= Jv(oara+ Py Vit Mg wit ¥ )av e V(ti Vit G )dA (5.2)
ISy
v
1 N A o o o o
afl(wd + z ma Vi vi + pl Vi : )\ki wik) =0 ’ (5-3)

and if we also use (4.2), then by summation of equations (5.2) we find

that
o
DU
rY o } o o o 1 o«
Jy azl{pa < ¢ maUa paraa-pa(fi Fi)vi+2 m. vy vi} dv
V o «
= j (= ti v, - nqu)dA . (5.4)

Aa=1

Equation (5.4) ic the same as (4.1) and with the help of (3.7) we recover
the point form (4.3).

Using (3.8), as well as (3.13) and (3.3), equation (5.3) reduces to

[ s IR

o o o a 1 o o i
(b Vi+O[kiI®ik*5 My Uy Yy -¥ ) =0 (5.5)

a=1

where

1 Aoy o A
Y= V,*+5 ma(vi - vy) (v

-v.) . (5.6)

i i

Also, with the help of (3.7), (3.13) and (5.6), the point form of (5.2)

15.
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becomes

o
o D Ua [+ 4 o
r - - —— - =
Poa " Y,k " %4 DT maUa + °(ki)dik + \ya o , (5.7)
o4 : . o
where c(ki) is the symmetric part of Ohi The arbitrary functions

Ya are subject to the condition (5.5). It is desirable to simplify

this condition and one way to achieve this is to put+

o, a
(

_ \Y o o \Y 1 o o
Y= ws(vi-vy) oy lop - )esm v up w0, (5.8)

so that
v
T e =0 |, (5.9)

and (5.7) becomes

o

DU
o

r o -mU + i m ua ua + @
oo - %,k T Py DT oot 2 My i Yt By

o, o v o o o o v
+ by (v =vi) + o) di * ok (@i wd =0 (5.10)

We observe that for some purposes it is useful to replace the v equations

(5.10) by an equivalent set, namely equation (4.3) and the v-1 equations

*This is not the only possible form for Ya . For example, the first
terms in (5.8) could be replaced by “Z (v?-vi) , the difference being

absorbed in ®a , but (5.8) is more convenient for our purpose.

16.




L NN = - =

o v
DU DU

r -pr -q +q . - —_ —2 emU +mU
pa o LN qk,k qk,k pu Dt pv Dt o o vV

.2 m WY - L m ou u +® -0 ot(vm--v\’) + o0&
2 % MM T2 M YT By T T WY TV T O (ki) ik
\Y v o o v
" O(ki)%k * orki) (@i -0y =0 (5.11)

o o o
T 4 i - i K3
In equation (5.10) the functions Uy ®a s By s Oy s G » B BTE all
otkjective.
If we eliminate T, from (4.8) with the help of (5.10) we obtain

the inequality

o [+ 4
v DA DT
.y X o o 1 @ .
a}_:lT UoglTE * Sy T ) * Taly = 2 My U1 Yy )
= o
P A T eod o W e?))- ek a0 (5.12)
e T Wi TV Ok ) Ykt Ok 1 Wik T Wik 2
a=1 o a=1 o
where
A =U -T s . (5.13)

The inequality (5.12) may be written in an alternative form which is

useful for some purposes. Since

17.




o o
v p DA D Td maAa
T { ( s —2) 4+
a=1 T Dt a Dt Ta
o o
v A mA p A DT
D o o o S o
=z {o_ =% (=) + + = (s + ) }
gey @Dt T ST T 7T Y T Dt
U:A s pr aT
A Y 3, Py . v 9,5, L T,
_p——+2'—( )+Z (—+\ _) s (5.124»)
Dt o1 ¥ T, w=1 T, Dt % 3%,
where
A v pA
¥*
s =85 +7 , eA=3 X% (5.15)
o o T T
o a=1 o
the inequality (5.12) be:omes
s or
DA Y Py o o v oo o a
-p=-3% —2% —=+7v =(5m u; u, +0)
Dt sy T, D8 T LT 2% i i e
v uaA *T
-5 L(_paka)_;:’ A% Tk
a=1 axk TCI a=1 T2
o
cr LT 0% yd o —al )] E o (5.16)
a=1 Ty BV m Vil * Oki) %k T ki) Wik T Wik!d = , 5,16
Where
el @ a *
qk = 9t P Ta Y Sa . (5.17)

We observe that

18.
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o
vV p A Vv v o
r & :k -5 ¢ (vz v;) T P,V
a=1 o a=1 ¢ a=1 ©
(5.18)
o v
6 =p(=2-4) , T ¢ =0 .
o aT, =l o
Hence, if we put
o¢
o o o _ _ a _ —a =
By Td—a)&{+p,i (@=1,..,v-1) , s = ToPobki® Ot (¢=1,..,v), (5.19)
the inequality (5.16) reduces to
S* DT
v p v
. A s 2o _o 2 1 o
Pt " E T ot I 7 (Bmyupupve)
. a=l "o o=l "o
vyo1 Sy o v) pn T ( @ v )]
. g (g (V= Vi) 4 00y 9500+ Ok {05k - 05y
o=l g
v q*d
NP S S (5.20)
a=1 T
o
and
v-1 vV
v o -
u'l = -Z ui ] z o[ki] =0 . (5.21)
a=1 a=1
For later convenience we introduce the notation
_ 1 _ - I S - S
e"—Ta v By = 8,08 e Ve v Tig = @5~ gy 0 (5-22)

so that (5.20) becomes

19.

g o It -

-

~

MM, - SR

A A r oo -




DA 1Y
-0+t Fo 5 t5 L o8 m
a: a =

- o - o
+ T 0 +8) lug Vi + o(ygydiy ¥

a=1

20.
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Jonctitutive equations

We assume that mass clements of each constituent are conserved

7o that

m, = 0 y (6.1)

i tnat the constituents of the mixture have elastic and viscous

. . o o
prorerties. We therefore assume that Aa’ S, O(ki)> % (@=1,..,v),

¥ - _ . +
bt T it By {a¢=1,..,v-1), are functions of

ax? 32 xE
£ i 8 i
oo Tt kT
X’ ). axk
J J (6.2)
v
T
and
vg’k , (6.3)
for B=1,..,v , y=1,..,9«1 . 1In view of invariance conditions under
surerposed rigid body motions of the whole mixture, the velocity
gradients must be replaced by
B Y
iy > Ty - (6.4)
*These constitutive equations satisfy equipresence which we regard as a
rmathematical convenience and not a physical principle.
21.
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Ir we use the inequality (5.12) to obtain restrictions on these constitu-

tive assumptions, it can be shown that A depends only on
T s 24 . (€¢.5)

In addition, further restrictions are placed on Aa and other dependent
functions, but there is some algebraic complexity in making explicit
deductions about the form of Aa from these restrictions.

Inspection of (5.20) suggests an alternative procedure. We assume
the A , s: (and hence A, S, ¢a), 3?@1)’ q:a (x=1,..,v), Eg ,
;gki]’ ®a (¢=1,..,v-1) are functions of the variavles (6.2) and (H.4).
From the inequality (5.20) we again find that A depends only on the
variables (6.5). From (5.17), (5.18) and (5.19) we see that qi and

[+
o

xi &re functions of the variables (6.2) and {6.4), bput that p: are

functions of

8
G" .
8 E.ilE dB FB
B,kr °’ axB * Tik,r > ‘ik,r °
r

as well as the variables (6.2) and (6.4). If we add the additional
restriction that ug should depend only on the quantities (¢.2) and
(€.4), it follows that ¢a reduce to functions of the variables

P

v B s ij b VE . (,'6)

Using (5.18)2 and the fact that A 1is & function of the quantities

(6.5), it follows that A, reduce to functions of the variables (6.6).

22.




R2stristions on the remaining constitutive equations may now be found
from (5.12), (5.10), (5.20) or (5.23), and we use (5.23). This procedure
wnre2ars to be slightly more restrictive than the first and is the one
1iorted here.

We azopt the notation

o o

iy = 18, 9 100 v, A, T (A=1,..,06v-T) (6.7)
aind we put

o _ o ¢4

ki T ki * e%i ’

pe S S} .

ki T ki * eTki  ?

o« o i

B T oddk T etk ’ :
)
H
i

- _ - —a I

e Tk Tetk (6.8) i

o _ o [+ ¢

% To% *e%k

*o *o

B “o% * ek ;
!

9, =B * 8y o I

where the quantities with a prefix o are the values of the corresponding
quantities on the left hand side of (6.8) when Y, = O . The remaining
terms in (6.8) may be regarded as polynomials of degree greater than zero

in the functions YA with coefficients which are functions of the remaining

variables in (6.2).

23. :

e e —




oIS W —

With the help of (5.20) we have

= ——= - b .9
.Sy = P8y 3 T, 3T (6.9)
o o
so that
v dA v p, 0A
porscx = eoz E pseﬁ a—eg - Ta z TfE 'B—TE . (¢.10)
B=1 o B=1 B "o
Also, we write
A =A"+ A" A=A"+ A" Al = ; A’ (6.11)
o o a » P Vel Pa'a :

where Ao'r are the values of Aa when AB s V}’i vanish, and A’ is the

value of A when AB vanishes. For the present we regard A;' as a
polynomial of degree greater than zero in AB ’ V}B( and A" as a

polynomial of degree greater than zero in AB with coefficients which
are functions of 8 , ng . The result (6.11)3 follows from (5.15)2.

Again, using (5.23), we have

- _p A L« p
ki T B, Py (6.12)
v ij

B o

- 1 A [ X A’ X
o“:= R (o -Ag— ngr —% " Pg _Q&_ ngr % ’ (6.13)

v B=1 aFiJ Bxk aFiJ axk

for a=1,..,v provided
24,
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v I [}
T ( ag Fp. - —§§— FF.)=0 . (6.14)
a=1 3F,, W >, I
ij kJ
Also
*au o
0@a =0 , 9 =0, 0% = 0 . (6.15)

In zadition there is a residual inequality which we omit. From (5.18),

(5.12), (€.12) and (€.13) we then have

¥ = ; Eﬁé— .

oo =% o , (6.16)
o ki - B .. @ "kJ
g=1 BFij
v o B 34! a
ou'g =z (pa g G?jr _g - pB —';L_ G:jr _; ’ (6'17)
=1 aFij axk aFij Bxk

in ngreement with previous results [9].

The above constitutive equations are subject to the usual invariance
zoniitions under superposed rigid body motions of the whole mixture.
For example, Aa’ A reduce to the new forms

ax: BXE
Aa=Aa(ev’AY’——°-B ’
Bxi ij X

L&

) (6.18)

Q

r

[

@ B
axr axr

' " a8 ) ’ (6'19)

A=A(8 ,A
VoY s axg

1
for a,B=1,..,v , Y=1,..,v-1 . 1In view of (6.19) we may verify that
the condition (6.14) is satisfied.
In obtaining the above constitutive equations, we have adopted the
second procedure described earlier in this section [after (6.5)). We

25-
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note that if we had used the first method, we would still recover the

results (6.9), (6.12), (©6.13), (6.16) and (6.17) with A(; being the

"equilibrium" values of Aa’ i.e., the values of Aa when Y, vanish.
The special case of the formulae (6.10) when all the temperatures

are equal is of same interest. In order to see what happens to (6.10)

we write
o, =8 , 8,-0 =8 (e=1,..,v-1) ,
then
3 - 3.
ae -BA (a#\)) b
o o
2.2 2
3
aev ?A a=1 aAb
and
v v-1
2 9 -a—=l_\i+z A__a—. .

;] @ aea 3h =1 @ BAa

The functions A_, may be expressed in the form
A, = AX(FY,, V2, A, A)
B~ AelFigr Vi B by

When

Ay=0 (Y=1,..,v=1) , A=1/T ,

where T 1is the common temperature of the constituents, we assume that

*, A
Ay = Ag(Fiys Vi, T)
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(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)




A v -————-

*

JA
_B . 7 ; (6.26)

1)

2|2,

= - X
22

It will not, in general, be possible to evaluate aAB/aAV as AY -0

*
in terms of the function A and we assume that these derivatives are

B
replaced by arbitrary finite scalar functions: From (6.10) and (6.21)

we see that under the condition (6.24),

* *

v Voo, A v 3A

T pS =% A o —£ .. T p s (6.27)
g=l @ B=1 B 3A g=1 B AT

or, defining

<
*

<
*

= 3 = ’ .2
pS .El p_S pA zl pBAB (6.28)
then
BA*
S = - = (6.29)

as given previously [6,8]. Also Sa- Sv become arbitrary functions of
F?j, Vi, T not expressible in terms of A; , which again agrees with a
previous result [9]. We recall that the energy equations, which provide
v differential equations for the v temperatures Ta s may be taken to

be (4.3) and the v-1 equations (5.11), and we observe that volume supplies

of heat may be taken to be given by the v independent gquantities

*This is analagous to the procedure used in the passage from a compressible
to an incompressible elastic material.

27.

" g o e e e—— e o s

EETSULFON

?
i
i




v
pr=% pr_ , r, -prT {(8=1,..,v-1) . (6.30)

g=1 @@ Pe’8 Vv

When temperatures reduce to a single temperature we have one equation
(4.3) for this. The remzining equations (5.11) can then, in general,
only be satisfied by appropriate choices for the heat supplies
pBrB - pvrv . This is similar to the situation in which we can, in
general, only maintain isothermal conditions with T constant by an
appropriate choice of r .

Special cases of the results (6.16) and (6.17) may be obtained

without difficulty. For example, if constitutive equations depend on

the deformation gradients FEJ only through the densities pB , then
v A
o -}
O: = =8 T pp , (6.31)
o ki ki g=1 © B Bpa
? 7
a VY %A apE BAE 3p
oMbk = L (pa ) " x P83 axa ) > (6.32)
B=1 ¥ °%p %k Pa Pk

as found previously [6]. These results are appropriate for a mixture of

viscous fluids.
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